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Abstract

Polymer stresses around sharp corners and in constrained geometries of
encapsulated components can generate cracks leading to system failures. Often, analysts
use maximum stresses as a qualitative indicator for evaluating the strength of
encapsulated component designs. Although this approach has been useful for making
relative comparisons screening prospective design changes, it has not been tied
quantitatively to failure. Accurate failure models are needed for analyses to predict
whether encapsulated components meet life cycle requirements. With Sandia’s recently
developed nonlinear viscoelastic polymer models, it has been possible to examine more
accurately the local stress-strain distributions in zones of likely failure initiation looking
for physically based failure mechanisms and continuum metrics that correlate with the
cohesive failure event. This study has identified significant differences between rubbery
and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure
criteria and metrics. Rubbery failure seems best characterized by the mechanisms of
finite extensibility and appears to correlate with maximum strain predictions. Glassy
failure, however, seems driven by cavitation and correlates with the maximum
hydrostatic tension. Using these metrics, two three-point bending geometries were tested
and analyzed under variable loading rates, different temperatures and comparable mesh
resolution (i.e., accuracy) to make quantitative failure predictions. The resulting
predictions and observations  agreed well suggesting the need for additional research.

In a separate, additional study, the asymptotically singular stress state found at the
tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined
for uniform cooling. The singular stress field is characterized by a single stress intensity
factor Ka, and the applicable Ka calibration relationship has been determined for both
fully bonded and unbonded inclusions. A lack of interfacial bonding has a profound



effect on inclusion-tip stress fields. A large radial compressive stress is generated in front
of the inclusion tip when the inclusion is well bonded, whereas a large tensile hoop stress
is generated when the inclusion is unbonded, and frictionless sliding is allowed.
Consequently, an epoxy disk containing an unbonded inclusion appears more likely to
crack when cooled than a disk containing a fully bonded inclusion. A limited number of
tests have been carried out to determine if encapsulant cracking can be induced by
cooling a specimen fabricated by molding a square, steel insert within a thin, epoxy disk.
Test results are in qualitative agreement with analysis. Cracks developed only in disks
with mold-released inserts, and the tendency for cracking increased with inclusion size.
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I.  Introduction

Thermosets are used to encapsulate a variety of weapon components with the
encapsulant serving to provide structural integrity, moisture and vibration protection and
high voltage isolation for delicate parts. Polymer stresses around sharp corners and in
constrained geometries of encapsulated components can generate cracks leading to
system failures. Often, analysts use maximum stresses as a qualitative indicator for
evaluating the strength of encapsulated component designs. Although this approach has
been useful for making relative comparisons screening prospective design changes, it is
not applied as an absolute definition of failure. In the current climate which demands
more for less (i.e., higher performance and greater surety at lower costs), it is becoming
more important to make accurate life cycle predictions and assign quantitatively
meaningful margins of safety. To do so, accurate polymer failure models are needed.
Ideally, these models should be broadly applicable under general operational
environments affecting temperature, loading, geometry, and material aging. Moreover, it
is extremely advantageous if they interface directly with the finite element codes
employed in engineering analyses. Although thermosets can fail adhesively (i.e., at
material interfaces) as well as cohesively (i.e., within the same material), this project has
focussed exclusively on cohesive failure events with the belief that things learned here
also will contribute to the study of adhesion. Specifically, two different topics have been
considered: the first looking at failure mechanisms and the second looking at failure
analyses. Hence, the dual purpose of this project was:

1) to use accurate descriptions of nonlinear viscoelastic stress/strain fields in cohesive
failure zones to identify failure mechanisms and look for continuum material-based
metrics for potentially new failure criteria,

2) to develop a failure analysis for cohesive cracking from the tip of a sharp-cornered,
encapsulated inclusion using an approach that is analogous to linear elastic fracture
mechanics, except here the critical value of the stress intensity factor is associated
with a corner discontinuity rather than a crack tip.

Although this work originally was proposed as a two year program, it was granted a one
year extension to make clear the distinctions between rubbery and glassy failure. The
corner toughness problem (item 2 above) was investigated by E. D. Reedy, Jr., and T. R.
Guess during years one and two. Their results were documented separately and are
included in Appendix B for completeness. The nonlinear viscoelastic analyses and work
in cohesive failure mechanisms (item 1) are presented in the subsequent text of this
report. This work was conducted by D. B. Adolf and R. S. Chambers with some fracture
toughness tests done by T. R. Guess and M. E. Stavig and some analyses performed by C.
S. Lo (particularly the parallel computing effort).

II.  Approach to Developing a Cohesive Failure Criterion

Linear elastic fracture mechanics is used to predict crack growth when there is
small scale yielding at the tip of a crack (i.e., process zone is small). This macro-
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approach to failure foregoes the complexity of the actual material behavior at the crack
tip and defines a toughness parameter (KIc) as the basis for determining when the crack
will grow [1]. Although this greatly simplifies the failure analyses, it does so at the
expense of material testing which must characterize the critical toughness for the
multiplicity of conditions likely to be seen in a service life (e.g., modes of loading,
variable loading rates, temperatures, extents of reaction, etc.).

This project takes a different view, opting to look explicitly at the details of the
actual epoxy behavior in local regions of high stress concentration. The continuum
stresses and strains are used to construct quantitative cohesive failure metrics (e.g.,
maximum strain, hydrostatic tensile stress, etc.) to serve as indicators for the specific
physical failure mechanisms (e.g., finite extensibility, cavitation) that are being proposed.
The failure mechanisms and criteria then are evaluated by performing both detailed
analyses and failure tests on different sample geometries under to a variety of conditions
to see whether the predictions correlate with observed failures. If such an approach
works, it not only identifies physical failure mechanisms, but it also relates the continuum
material response to those physical failure mechanisms in a predictable way. Moreover, it
then can be implemented directly in finite element analyses providing a more generally
applicable capability for predicting failure, one that is not limited to “small scale
yielding”. Although the idea of analyzing crack-tip stresses in search of a failure criterion
is not new, the approach that was taken in this project is new for the following reasons:

1) The stress analyses incorporated the right material physics. Polymers are nonlinear
viscoelastic materials. A validated nonlinear viscoelastic material model based on
large deformation mechanics with the proper finite strain measure (Hencky strain)
was used.

2) The failure tests were performed on non-singular geometries (i.e., samples with
notches not sharp cracks) making finite element solutions well behaved and
convergence more readily attainable.

3) Parallel processing was used to perform these computationally taxing analyses.

III.  Viscoelastic Modeling

Recent advances in polymer modeling at Sandia National Laboratories have led to
the development and validation of linear and nonlinear viscoelastic material models for
Sandia’s encapsulants (to be published separately). The constitutive equations also have
been implemented in the JAS3D finite element code [2]. With these tools, it is now
possible to analyze fully three dimensional geometries under arbitrary loading conditions
to predict detailed stress and deformation histories as functions of time, temperature, and
aging (physical and chemical). Figures 1-3 provide comparisons between the model
predictions and experimental measurements conducted with the Epon 828/DEA unfilled
epoxy system for three distinctly different types of tests: uniaxial compression/tension,
volume straining under cyclic thermal histories, and enthalpy relaxation (aged and
unaged). The host of physics now predictable encompasses a full range of polymer
behavior: yielding under arbitrary loading, relaxation in stress and volume, physical
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aging, etc. Unfilled Epon 828/DEA was selected for all the experiments and analyses
performed under this project in developing the cohesive failure criteria.

IV.  Failure Test Geometries

All failure tests were conducted with a three-point bending specimen. The
baseline sample geometry was a rectangular bar (length 4”, depth w=0.5”, and
thickness=0.25”) with a 2” span between supports. The linear elastic fracture toughness
(documented in Appendix A) was measured using edge-cracked specimens. However, in
developing the cohesive failure criteria, two types of notched (non-singular) geometries
were used. The first was a narrow-notched sample having a 0.004” (100 micron) notch
radius yielding a 0.008” total slot width. The second geometry contained a semi-circular,
cut-out of constant radius centered on the bottom edge of the beam. For the latter
geometry, multiple test samples were created using cutting diameters equal to 0.125”,
0.25”, 0.50” and 0.69”. The two three-point bending test geometries are illustrated in
Figure 4.

V.  Failure Hypotheses

Thermosets are viscoelastic materials which exhibit both glassy and rubbery
behavior. This is readily apparent from a simple shear stress relaxation test in which a
thermoset (e.g., Epon 828/DEA) is subjected to an instantaneously applied constant shear
strain, and the shear stress is observed to decay over time. The glassy modulus which is
computed by dividing the initial, short-time shear stress by the constant shear strain is
seen to be about 100 times larger than the long-time, rubbery (equilibrium) modulus. This
disparity in the magnitude of the moduli is related directly to the internal load carrying
mechanisms. The rubbery modulus arises from intermolecular (chain extension) forces.
Although these also are present in the glass, they are not the dominant load carrying
mechanism. Instead, it is the intramolecular (van der Waals) forces which carry most of
the load in the glass. These facts are important for distinguishing why the glass behaves
differently from the rubber.

In addition to the observed differences in moduli between the glassy and rubbery
regimes of thermosets, there also are differences in their observed failures. Under
identical loadings, the rubber fails first even though the stresses and strains are lower than
those in the glass. Moreover, in a compression test, the rubber tends to shatter into
hundreds of small pieces whereas the glass internally cracks but remains in tact. This
suggests that the cohesive failure mechanism of the glass is very likely different from that
of the rubber.

Influenced by the data and the lore of the polymer community, two distinctly
different failure hypotheses were proposed, one for the rubber and one for the glass.
Since the physical load carrying mechanism in the rubber comes from stretching the
underlying global polymer network, a finite extensibility criterion was suggested. Under
this view of failure, the network strains gradually are stretched until they reach some
physical limit. When all chains have been extended such that there are no more
extensional degrees of freedom, the chains rupture and the sample fails catastrophically.



4

To a certain extent, this same picture also carries over into glassy failure. When a glass is
stretched, the network chains likewise are stretched, ultimately to the same limit. The
difference, however, is that the glass provides a second more dominant load carrying
capability. Although the chains in the glass may break as they did in the rubber, the glass
has intramolecular (van der Waals) forces which continue to carry the load. This means
that chain rupture is not catastrophic. Rather, the loading can continue until another
failure mechanism occurs. The fact that glassy failure also is an abrupt phenomenon
implies that some critical event takes place well after the chain limit has been attained.
One such possibility is a cavitation event whereby a “void” suddenly pops into a domain
of high stress concentration unleashing a catastrophic material instability. This is the
glassy failure mechanism that was chosen for evaluation.

VI.  Failure Metrics and Modeling Approach

Having proposed failure mechanisms for the rubber (finite extensibility) and
the glass (cavitation), there remains the task of identifying appropriate failure metrics to
associate with the proposed physical failure mechanisms. These metrics are quantities
that are obtained from a detailed nonlinear viscoelastic analysis of a failure test and that
serve as quantitative indicators which directly correlate with the observed failure events.
For the finite extensibility criterion in rubbery failure, a maximum principal strain
parameter was selected. A maximum hydrostatic tensile stress was chosen as the
indicator of a cavitation failure in the glass. Both metrics, of course, must be evaluated
with experimental data to determine their suitability.

There still remains the task of determining whether any of this actually works.
To do so, first some failure tests were performed and analyzed to see if the chosen failure
metrics performed consistently. This requires one to be able to pick a maximum strain
criterion for rubbery failure which falls within the reasonable data spread of the observed
test results. Likewise, this must be done for the maximum hydrostatic tensile stress in
predicting glassy cavitation. Once the criteria have been selected, then they can be used
to predict failures in other tests varying things like loading rate, geometry or temperature.
If the failure metrics generally correlate with the observed failures, then there is evidence
that the underlying physical failure mechanics and metrics are reasonable, and a finite
element based failure prediction is achievable.

VII.  Rubbery Analyses

The rubbery failure tests with the semi-circular notched samples loaded in three-
point bending were analyzed first. To ensure rubbery behavior, these tests were
conducted at 120C which is about 50 degrees above glass transition (Tg=68C). Figure 5
contains a painted color contour plot of the maximum strain taken from the sample with
the 0.50” diameter notch. As one would expect from an elastic analysis, the maximum
strain occurs on the face of the notch where the stress is concentrated. To determine the
critical value of the maximum strain for the finite extensibility failure criterion, finite
element analyses of four different failure tests were performed. The simulations were
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based on the semi-circular notched geometries with four different notch diameters:
0.125”, 0.25”, 0.50” and 0.69”. From the finite element predictions, plots of the
maximum local strain (at the notch edge) as a function of the sample mid-span deflection
were generated and are provided in Figure 6. The first task was to determine if the
models indicate the existence of a common critical strain that is consistent with the
measured displacement to fail in all four geometries. From the experimental scatter in the
measured displacements to fail (noted in Figure 6 as error bars), one can identify a
corresponding range in potential strains to fail. A common critical strain of 0.24 appears
to fall within the data scatter for all the tests as noted in the figure. Using the 24% critical
strain as the metric for failure, the loads to fail can be predicted from the analysis results
as shown in Figure 7. Since plane strain assumptions were used to analyze the failure
tests, one would presume that the predicted strains at failure are probably more accurate
that the predicted loads. Plots of the displacement and load to fail as a function of hole
diameter are provided in Figures 8 and 9, respectively.

Using the critical strain of 0.24 determined from the failure tests on the circular-
notched samples, failure predictions also were made for the narrow-notched (100 micron
radius) geometry which more nearly resembles an edge crack. The predicted and
measured loads to fail are plotted in Figure 10 as a function of the ratio of notch length to
specimen height (a/W). Excellent agreement was obtained. If one treats the narrow notch
as a true edge crack and uses the traditional equations for edge-cracked three-point
bending samples, an apparent fracture toughness (KQ) can be computed. This value is
plotted in Figure 11 for (a/W) ratios of 0.4, 0.5, 0.6. The important point here is that the
apparent toughness is virtually constant as one would expect.

It also is interesting to consider how the load and displacement to fail may be
affected by changes in material properties. Batch-to-batch variations, for example, may
produce materials with different rubbery moduli. The log-log plots in Figure 12 illustrate
this relationship. From these results, it is possible to deduce the dependence of the critical
failure strain parameter on the rubbery shear modulus. That relationship is provided in
Figure 13.

VIII.  Glassy Analyses

To evaluate the glassy failure criterion, the narrow-notched (100 micron radius),
three-point bending, room-temperature, failure tests were analyzed under deformations at
0.2”/min. Unlike the rubbery response which was elastic, these solutions reveal
significant nonlinear viscoelastic behavior. Evidence for this can be seen in the time and
location history of the maximum hydrostatic tensile stress during loading. A painted color
plot of the hydrostatic tension zone prior to failure is found in Figure 14. The variation in
hydrostatic tensile stress as a function of distance along the symmetry plane measured
from the notch tip can be seen in the various time curves of Figure 15. Note that during
early times the response is elastic, and the maximum tensile stress occurs at the notch tip.
However, as the deformation increases, the material eventually yields pushing the local
maximum away from the notch.

Just as was done in the rubbery elastic analyses, here also the failure tests were
used to look for a consistent failure criterion, except this time the metric of interest was
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the maximum hydrostatic tensile stress. Plots of the predicted maximum hydrostatic
tensile stress as a function of mid-span deflection in the room-temperature, three-point
bending test are shown in Figure 16 for the three (a/W) geometries. The critical
hydrostatic stress that seemed to fall within the data scatter of the measured
displacements to fail in all the tests was approximately 125 MPa. Using this value as the
failure criterion, one can again make a prediction of the loads and displacements to fail as
noted in Figure 17.

The glassy failure analyses were much more difficult to perform. This was due in
part to the computational expense of nonlinear viscoelasticity which of course can be
offset by running in parallel using more processors. The other issue arises from material
yielding. As the elements near the notch tip effectively soften under load, they strain
enormously. This can lead to extreme mesh distortion, especially if the strain hardening is
not quite right, that requires remeshing. All this further reinforces the need for using the
proper strain measure and having a material model validated for large strains. Because of
the numerous difficulties and the time constraints on the project, the analyses of the
glassy failure tests were not taken all the way to the observed failure deflection. That is
the distinction made between the solid and dashed analysis curves shown in Figure 16.
The solid lines were plotted directly from the analysis results, and the dashed lines are
extrapolations of these curves. Judging from the well behaved character of the analyses,
the extrapolations were believed to be realistic. Nevertheless, to verify this assumption,
one more step was taken. A second choice for the critical failure metric was selected
corresponding to a lower hydrostatic tensile stress, namely 100 MPa. This value was one
achieved in all three (a/W) failure test analyses. The idea here was to make failure
predictions with both critical stresses (the 125 MPa value and the 100 MPa value).
Although it is natural to expect there to be differences in the resulting loads and
deflections to fail, one would not expect to see any qualitative differences in the
predictive trends. If those do occur, then this casts some doubt on the validity of the
aforementioned analysis extrapolations.

In Figure 18, the predicted and measured loads to fail are plotted as a function of
the (a/W) ratio for the narrow notched geometries that were tested. Note that predictions
were made for both the 125 MPa and the 100 MPa values of the critical hydrostatic
tensile stress (glassy failure metric). As expected, the 125 MPa prediction is in line with
the data from which it was chosen. The 100 MPa result shows the same trend of
decreasing load to fail with increasing (a/W) ratio. The predicted loads to fail are of
course less when the critical stress metric is smaller. Figure 19 is a plot of the predicted
effective toughness when the narrow notch is treated as an edge crack in a three-point
bending test. Again, the important feature here is that both critical stress values result in a
predicted apparent toughness that is essentially constant.

To check the validity of the proposed glassy failure mechanism (cavitation) and
the associated failure metric (critical hydrostatic tension), other test variations were
reviewed. One of these involved changing the beam deflection rate by two orders of
magnitude (0.02”/min to 2”/min) to determine whether the sensitivity to rate could be
predicted properly. The predicted loads to fail are plotted with the data in Figure 20, and
the variation in the apparent toughness is shown in Figure 21. Note that both the loads to
fail and toughness decrease with increasing deflection rate. This is consistent with the
data. Furthermore, when the failure metric is chosen to be 125 MPa, the predictions are
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well within the scatter of the data. If the lower critical hydrostatic tension (100 MPa) is
selected instead, the same trends are predicted albeit at lower magnitudes as one would
expect.

Temperature sensitivity also was investigated. Tests and analyses were conducted
at temperatures of 50, 18 and –50 C loading under deformations imposed at 0.2”/min.
The data/analysis comparisons can be seen in Figures 22 and 23. The data show that there
is a minimum both in the toughness and in the loads to fail somewhere around room
temperature. Although the loads and toughness do appear to increase as one cools from
18 C to –50 C, the magnitude of that increase is much less than the increase observed on
heating from 18 C to 50 C (closer to glass transition). The latter increase is predictable as
evidenced by the results obtained with the 100 MPa critical stress metric. However, on
cooling from 18 C to –50 C, the model predicts a nearly flat line (slight decrease). This
discrepancy may be due to the fact that the nonlinear viscoelastic model parameters do
not have the correct temperature dependence down to –50 C. To accurately compute in
this regime, additional material data is required. Also note that there is not a failure
prediction at 50 C using the 125 MPa critical stress. This analysis, like those mentioned
earlier, terminated before the critical hydrostatic stress was attained. However, unlike the
prior elastic results, the 50 C analysis showed a substantial nonlinearity in the stress
versus deflection response (being closer to glass transition). This precluded us from
comfortably extrapolating the stress curve to 125 MPa to obtain an estimate of the load to
fail. Once again, there is qualitatively no difference between the predictions made with a
critical stress of 100 MPa and those made with a value of 125 MPa.

Finally, there are a few things to mention about the sensitivity of glassy failure to
the polymer’s degree of cure. Because the glass transition temperature, Tg, increases with
the degree of cure, one must vary the test temperature, T, to conduct glassy failure tests at
a constant value of (T-Tg). On doing that, one finds that the load and displacement to fail
as well as the apparent fracture toughness of the material all go through a relative
maximum. This can be seen in Figures 24 and 25. The Sandia cure schedules for
encapsulated components are structured to hit that maximum. The decrease in toughness
for the higher degrees of cure is attributed to the decrease in heat capacity and glassy
modulus. This behavior is typical of what would be encountered in long term aging of
encapsulated components, and it can be modeled. The toughening that occurs during the
early stages of cure is not yet well understood.

IX.  Finite Element Meshing and Modeling Issues
Finite element methods use a spatial discretization to capture the deformation

gradients in a general boundary value problem. Because individual finite elements adopt
limited basis functions for their representation of the deformation fields, they must be
concentrated in regions of large gradients to have sufficient degrees of freedom to
accurate represent the solution. In the problems under consideration, this required meshes
to be refined near the notches. Even so, for the rubbery elastic analyses, the maximum
stress/strain occurs on the free surface at the tip of the notch. Since the stresses are
computed at the centroid of the finite elements and not at this free surface location, this
means that there is always an offset between the actual maximum strain and the
maximum strain in any finite element. At a crack tip, the elastic stresses are infinite and
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no amount of mesh refinement can capture this local gradient. However, in non-singular
geometries (such as the rounded notches chosen for this study), the local gradients are
finite. This means that in principle, with sufficiently refined meshes, one can obtain
solutions of specified accuracy. This is the basis for so called h-adaptive (or p-adaptive)
finite element methods. Given that any failure testing has some margin of error associated
with the loads or displacements to fail, it is sufficient for the finite element analyses to
predict maximum stresses and strains that lie within these experimental error windows.

The finite element meshes for all of the aforementioned analyses were generated
from a meshing script. Furthermore, the script was parameterized to allow geometric and
meshing parameters to be changed readily and consistently. By design, these meshes
were constructed to produce comparably sized finite elements for all four variations of
the semi-circular notched sample (D=0.125”, 0.25”, 0.50”, and 0.69”) and for all three
variations in the narrow notched specimen (a/W=0.3, 0.4, 0.5). As a result of this
strategy, solutions of comparable accuracy were obtained enabling one to apply the
chosen failure metric consistently to all test variations.

While it is true that accurate, non-singular, elastic finite element solutions are
attainable with sufficient mesh refinement, it still can be a challenging task. For the
problems under study, this is exacerbated by the fact that the rubbery epoxy is nearly
incompressible, the finite element meshes contain a large spread in element sizes to cover
the whole domain of the 3-point bending sample, and the solutions are obtained with
codes using iterative solvers. Although these factors were considered in generating and
analyzing the meshes for the problems that have been presented, there is room for
additional work in obtaining and proving that highly accurate (spatially converged, h-
adaptivity) solutions have been obtained. In the closing weeks of this project, additional
meshing studies were performed indicating that greater accuracy is attainable.
Quantitatively, this affects the magnitude of the failure metric that is chosen from the test
analyses. This means for example, that the maximum strain criterion (0.24) that was
identified from the prior analyses is actually a lower bound. Although better estimates
can be obtained with additional mesh refinement, this qualitatively does not change the
predictive capabilities of the proposed approach.

X.  Summary

In the course of developing a nonlinear viscoelastic cohesive failure criterion, the
following work has been performed:

1) Conducted three-point bending tests on notched samples to collect cohesive failure
data varying temperature, loading rate and notch geometry

2) Hypothesized failure mechanisms for rubbery and glassy behavior
3) Identified consistent local failure metrics directly obtainable from finite element

results
4) Analyzed failure tests with nonlinear viscoelastic material model and used the local

failure metrics to predict failure
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The physical picture of thermoset failure is different for rubbery and glassy behavior.
Rubbery failure seems to be controlled by the finite extensibility of the network chains,
and glassy failure appears to involve a cavitation event. Based on these assumptions,
local failure metrics were proposed. For the rubber, a local metric based on the maximum
strain correlates well with the observed failures. For the glass, a local metric based on the
maximum hydrostatic tensile stress seems to work. Both criteria involve parameters
readily attainable from nonlinear viscoelastic finite element analyses.

XI.  Future Direction

This work provides a good foundation for understanding cohesive failure by
demonstrating the feasibility of using local finite element results to define metrics which
correlate with glassy and rubbery failure mechanisms in thermosets. However, there is a
strong need to check the consistency of the local failure metrics in more complicated
geometries and loading scenarios. One such example might be to study and predict
cohesive failures around corners in an encapsulated inclusion. If the methodology is
found to work in general, then these criteria should be implemented directly in our finite
element codes for use in polymer analyses (e.g., encapsulation failure).
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Figure 1. Nonlinear viscoelastic stress-strain data and predictions under uniaxial
compression/tension conditions at different temperatures.

Figure 2. Nonlinear viscoelastic data and predictions of volume straining under
cyclic cooling and heating at 2 C/min.
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Figure 3. Nonlinear viscoelastic data and predictions of constant pressure heat capacity
from enthalpy relaxation on both aged and unaged samples.

Figure 4. Notched beam geometries for 3-point bending failure tests.

Notch Radius= 0.004” (100 µm)

Diameters= 0.125, 0.25, 0.50, 0.69”
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Figure 5. Maximum strain plot from rubbery elastic analysis of semi-circular
notched (D=0.50”) three-point bend sample.
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Figure 13. Effect of rubbery shear modulus on critical failure strain used
as the finite extensibility rubbery failure metric.
Figure 14. Plot of maximum hydrostatic tensile stress in notched, three-point
glassy bending test.
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Figure 15. Variation of maximum hydrostatic tensile stress as a function of
distance measured from the notch at increasing times during the
glassy failure test.
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Figure 17. Plots of the load versus mid-span deflection for the glassy

failure test with the narrow-notched sample.
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Figure 18. Plots of the data and the predicted load to fail as a function of the a/W

ratio for the glassy failure tests with the narrow-notched sample using
two different critical failure metrics.
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Figure 19. Plots of the apparent toughness as a function of the a/W ratio for the

glassy failure tests with the narrow-notched sample using two different
critical failure metrics.
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Figure 20. Plots of the data and predicted load to fail as a function of the deflection

rate for the glassy failure tests with the narrow-notched sample using two
different critical failure metrics.
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Figure 21. Plots of the apparent toughness as a function of the deflection rate for the

glassy failure tests with the narrow-notched sample using two different
critical failure metrics.
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Figure 22. Plots of the data and the predicted load to fail as a function of temperature
for the glassy failure tests with the narrow-notched sample using two
different critical failure metrics.
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Figure 23. Plots of the apparent toughness as a function of temperature for the glassy
failure tests with the narrow-notched sample using two different critical
failure metrics.
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Figure 24. Plots of the load and displacement to fail as a function of rubbery shear
modulus (varying degree of cure) for glassy failure tests.
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Appendix A
Fracture Toughness of 828/DEA Epoxy-

Effects of Loading Rate and Test Temperature

Tommy Guess and Mark Stavig, 1472
January 1998

This preliminary test report summarizes fracture toughness and dynamic mechanical
analyzer (DMA) data for unfilled 828/DEA epoxy that has been generated for our LDRD
“Micromechanical Failure Analyses for Finite Element Polymer Modeling”.

Material
The epoxy formulation, cure schedule and annealing schedule used are listed in Table 1.

Table 1 Material Tested
ENCAPSULANT 828/DEA
MIX RATIO (pbw) 100/12
CURE SCHEDULE 90C for 24 hours
ANNEALING SCHEDULE
(just prior to fracture tests)

•  15 minute ramp RT to 90C
•  20 minute hold at 90C
•  2C/min ramp 90C to RT

Specimens were annealed prior to testing to remove thermal history and get them all in the
same condition. The fracture toughness specimens were annealed after the crack was introduced.
It is of interest to note that the crack could be seen visually prior to the annealing process, but not
after annealing. The small glitch observed early in most of the loading curves is thought to be
tied to fact that somehow the annealing somehow affects the initial opening of the crack.

Fracture Toughness Tests
Plane strain fracture toughness KIC of the Epon 828/DEA epoxy was measured using an edge-

cracked, three-point bend specimen with a support span of 2 inches. Testing procedures followed
the guidelines in ASTM E-399, the Standard Test Method for Plane-Strain Fracture Toughness
of Metallic Materials.  A sharp crack of length ‘a’ was introduced on one edge of a cast,
rectangular bar (length = 4”, depth w = 0.5”, and thickness = 0.25”). The procedure to produce
the crack was 1) saw a narrow slot about 0.1” deep, 2) scribe a line with a razor blade onto the
bottom of the saw cut, 3) clamp the sample in a cracking fixture, and 4) lightly tap the razor
blade located on the scribed line to grow a sharp crack to a length-to-depth ratio of a/w = 0.3 to
0.7.

Tests were done at three temperatures and three crosshead rates.  The effect of loading rate
was probed by using three loading rates (0.02, 0.2, and 2.0 in/min) at room temperature (23C);
and the effect of temperature was investigated by using three temperatures (-60C, 23C and 50C)
at one loading rate (2.0 in/min). The original intent was to use 0.2 in/min but there was too much



2

yielding during the 50C tests. Therefore, the loading rate was increased to 2 in/min for the
temperature effect tests. A minimum of 8 specimens were tested at each condition.

Typical load versus time responses as a function of test temperature are shown in Figure 1. At
the 2 in/min loading rate, it takes less than 0.4s to load to failure.  On the other hand, it takes up
to about 25s when the loading rate is 0.02 in/min (see Figure 2).
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Fracture toughness values are listed in Table 2; the average and standard deviation of each
data set is plotted in Figure 3.

Sample Test Temperature Deflection Rate Ratio Fracture Toughness KIC

ID (C) (in/min) Crack length / Sample Depth (psi-in.5)
Effect of Loading Rate  (at constant test temperature)

#1 23 0.02 0.368 894
#2 23 0.02 0.449 799
#3 23 0.02 0.334 1032 Avg = 940
#4 23 0.02 0.684 1059 Stdev = 87
#6 23 0.02 0.443 895 cv (%) = 9.3
#7 23 0.02 0.539 991
#8 23 0.02 0.382 883
#9 23 0.02 0.374 969

#10 23 0.2 0.349 783
#11 23 0.2 0.328 846
#12 23 0.2 0.366 761
#13 23 0.2 0.317 697 Avg = 787
#14 23 0.2 0.397 817 Stdev = 44
#15 23 0.2 0.337 750 cv (%) = 5.6
#16 23 0.2 0.634 772
#17 23 0.2 0.320 830
#18 23 0.2 0.367 815
#19 23 0.2 0.325 800

#20 23 2.0 0.663 768
#21 23 2.0 0.389 677
#22 23 2.0 0.429 750
#23 23 2.0 0.345 674 Avg = 711
#24 23 2.0 0.510 708 Stdev = 31
#25 23 2.0 0.378 704 cv (%) = 4.4
#26 23 2.0 0.669 722
#27 23 2.0 0.346 700
#28 23 2.0 0.464 700

Effect of Test Temperature (at constant loading rate)
 -60C #1 -60 2.0 0.696 774
 -60C #2 -60 2.0 0.345 794
 -60C #3 -60 2.0 0.360 790
 -60C #4 -60 2.0 0.461 824 Avg = 794
 -60C #5 -60 2.0 0.411 820 Stdev = 48
 -60C #6 -60 2.0 0.353 735 cv (%) = 6.0
 -60C #7 -60 2.0 0.500 764
 -60C #8 -60 2.0 0.392 722
 -60C #9 -60 2.0 0.352 885

 -60C #10 -60 2.0 0.380 823
 -60C #11 -60 2.0 0.476 781

#20 23 2.0 0.663 768
#21 23 2.0 0.389 677
#22 23 2.0 0.429 750
#23 23 2.0 0.345 674 Avg = 711
#24 23 2.0 0.510 708 Stdev = 31
#25 23 2.0 0.378 704 cv (%) = 4.4
#26 23 2.0 0.669 722
#27 23 2.0 0.346 700
#28 23 2.0 0.464 700

50C-2 50 2.0 0.450 1156
50C-3 50 2.0 0.330 1239
50C-4 50 2.0 0.546 1205 Avg = 1224
50C-5 50 2.0 0.369 1138 Stdev = 63
50C-6 50 2.0 0.629 1344 cv (%) = 5.1
50C-7 50 2.0 0.388 1232
50C-8 50 2.0 0.560 1236
50C-9 50 2.0 0.385 1238

Table 2.  828/DEA Fracture Toughness Data
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DMA Tests

A thin plaque of 828/DEA was processed at the same time the fracture toughness specimens
were poured. Strips from the plaque were used in torsional DMA tests to measure the glass
transition temperature Tg of the epoxy; typical DMA data are plotted in Figure 5.  Tg has a value
of ~71C if taken as the onset of the glassy-to-rubbery response and ~83C if taken as the
temperature at the peak of the Tan δ response.

Fig. 5. Typical DMA torsional test results for 828/DEA epoxy as a function of temperature.
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Appendix B 
Rigid Square Inclusion Embedded within an Epoxy Disk: 

Asymptotic Stress Analysis 

E. D. Reedy, Jr. and T. R. Guess 

Sandia National Laboratories, Albuquerque, New Mexico 87185 

Abstract 

The asymptotically singular stress state found at the tip of a rigid, square inclusion 
embedded within a thin, linear elastic disk has been determined for both uniform cooling 
and an externally applied pressure. Since these loadings are symmetric, the singular stress 
field is characterized by a single stress intensity factor K,, and the applicable K, 
calibration relationship has been determined for both a fully bonded inclusion and an 
unbonded inclusion with frictionless sliding. A lack of inter-facial bonding has a profound 
effect on inclusion-tip stress fields. When the inclusion is fully bonded, radial 
compression dominates in the region directly in front of the inclusion tip and there is 
negligible tensile hoop stress. When the inclusion is unbonded the radial stress at the 
inclusion tip is again compressive, but now the hoop tensile stress is of equal magnitude. 
Consequently, an epoxy disk containing an unbonded inclusion appears more likely to 
crack when cooled than a disk containing a fully bonded inclusion. Elastic-plastic 
calculations show that when the inclusion is unbonded, encapsulant yielding has a 
significant effect on the inclusion-tip stress state. Yielding relieves stress parallel to the 
interface and greatly reduces the radial compressive stress in front of the inclusion. As a 
result, the encapsulant is subjected to a nearly uniaxial tensile stress at the inclusion tip. 
For a typical high-strength epoxy, the calculated yield zone is embedded within the 
region dominated by the elastic hoop stress singularity. A limited number of tests have 
been carried out to determine if encapsulant cracking can be induced by cooling a 
specimen fabricated by molding a square, steel insert within a thin, epoxy disk. Test 
results are in qualitative agreement with analysis. Cracks developed only in disks with 
mold-released inserts, and the tendency for cracking increased with inclusion size. 



Introduction 

Polymeric encapsulants are widely used in the automotive, aerospace, and 
electronic industries. The encapsulant holds a component in place and protects it from 
applied loads and the surrounding environment. If the encapsulant cracks the component 
may fail. In many cases the encapsulated part has sharp comers. For example, sharp 
comers are often found in microelectronic chip packages. When failure occurs, it will 
typically initiate at a comer. On a finer scale, polymer encapsulants are usually filled with 
particles to improve their properties. Some common types of fillers are created by 
crushing a bulk material, and as a consequence, the filler has sharp comers. Microcracks 
initiating at sharp-cornered particles can degrade a filled material. 

A simple, 2-D idealization of an encapsulated sharp-cornered component or 
particle is a homogeneous, isotropic, square inclusion embedded within an isotropic 
material (Fig. 1). The encapsulated component or particle is typically much stiffer than 
the encapsulant, and it is often reasonable to regard the inclusion as rigid. When viewed 
asymptotically, the inclusion tip is the apex of a wedge (Fig. 2). Several studies have 
provided detailed information about the stress field found at the tip of a linear elastic 
wedge. Williams (1952) analyzed a single material wedge with a variety of edge 
boundary conditions. He noted that a power-law stress singularity 

(T - K.$-’ -lcRe(h-l)<O 

can exist at the apex of the wedge and determined how the order of the stress singularity, 
h-1, depends on boundary conditions and elastic properties. For singular stress and 
bounded displacements, - lcRe(h-l)<O, Williams’ results for a wedge with both edges 
clamped are applicable to a rigid inclusion surrounded by an elastic material. Bogy and 
Wang (197 1) analyzed bonded, dissimilar elastic wedges that together form a full plane. 
These results show how the strength of the stress singularity depends on the elastic 
properties of the inclusion. Chen and Nisitani (1993) noted that there are at most two 
power-law singular terms in the asymptotic expansion of the stress field with -l&l<0 
for many cases of practical interest (when P(a-P)>O, where a, p are the elastic bimaterial 
parameters defined by Dundurs, 1969). The exponent defining the strength of each of the 
singular terms is real, and the two exponents are generally different. They also found that 
one of the singular terms is associated with symmetric loading about the line bisecting the 
apex of the wedge, whereas the other is associated with an asymmetric loading about the 
bisecting line (i.e., x axis in Figure 2). In another study Chen (1994) presented stress 
intensity factor relations for a bonded inclusion embedded within an infinite plate 
subjected to uniaxial tension, biaxial tension, or shear at infinity. A variety of inclusion 
shapes were considered. 

The value of the stress intensity factor K, (Eq. 1) characterizes the magnitude of 
the stress state in the region of the inclusion tip (the subscript “a” on K is used to denote 
that this stress intensity factor is associated with the apex of a wedge). It is reasonable to 
hypothesize that failure occurs at a critical K value, I($,. Such an approach is analogous 
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to linear elastic fracture mechanics, except here the critical value of the stress intensity 
factor is associated with a discontinuity other than a crack. As is the case of linear elastic 
fracture mechanics, small-scale yielding conditions must apply. The asymptotic stress 
state characterized by K, must dominate a region that is significantly larger than the 
fracture process zone, plastic yield zone, and the extent of any subcritical cracking. The 
inclusion tip must also appear sharp on this length scale. 

The applicability and accuracy of a K,-based failure analysis to encapsulated 
inclusions has yet to be conclusively demonstrated. There appear to be few published 
experimental results applying this approach to encapsulated bodies. One exception is the 
work of Hattori et al (1989), who molded epoxy models with small Fe-Ni inserts and 
looked for failure as the molding cooled. Note, however, there is convincing evidence 
that the stress intensity factor for other types of comer discontinuity can be used to 
predict failure. Reedy and Guess (1993, 1995, 1996a, 1997, and 1999) have shown that 
the observed reduction in the tensile strength of adhesively-bonded, cylindrical butt 
joints, with increasing bond thickness, is accurately predicted by a K,, criterion. In this 
case K, is associated with an interface comer, the point where the interface between two 
bonded quarter planes intersects the stress-free edge. Dunn et al, (1997a, b) have 
successfully predicted the fracture of homogenous materials containing a sharp notch 
using a similar approach. 

Reported below is the K, calibration for a rigid, square inclusion embedded within 
a thin disk and subjected to either a uniform cooling or to an external applied pressure. 
This symmetrically loaded configuration is a particularly attractive test specimen, since 
the asymptotic stress field is characterized by a single K. Two extremes in bonding are 
considered: fully bonded and unbonded with frictionless sliding. Elastic-plastic 
calculations for a representative epoxy encapsulant have also been carried out. These 
results illustrate the effect of yielding on inclusion-tip stress fields and also the validity of 
the small-scale yielding assumption. Finally, the results of a limited number of 
preliminary experiments are presented. 

Asvmutotic Solutions for Bonded and Unbonded Inclusions 

Figure 1 shows the encapsulated-inclusion geometry analyzed. A rigid, square 
inclusion, with side length h, is embedded within a disk of diameter D. The disk is 
presumed thin relative to the characteristic inclusion dimension h, and a plane stress 
analysis is applied. Figure 2 shows the associated asymptotic problem. Note that there is 
geometric symmetry about the x axis and that the uniform cooling and applied pressure 
loadings considered in this study are also symmetric about the x-axis. Accordingly, the 
line bisecting the apex of the wedge (i.e., x-axis) is a line of symmetry. Furthermore, for 
plane stress and with the elastic encapsulant (with Young’s modulus E and Poisson’s 
ratio V) taken to be Material 1 and the rigid inclusion Material 2, Dundurs’ (1969) elastic 
bimaterial parameters a, p take on the values a=-1, and p=-( l-v)/2, and P(a-P)>O. 
Consequently, the asymptotic solution contains one singular term, and the singularity 
exponent is real (Chen and Nisitani, 1993, as discussed above in the Introduction). 



One anticipates that the nature of the inclusion-to-encapsulant bond has a 
substantial effect on inclusion-tip stress fields. Typically, a strong interfacial bond is 
sought, although a less-than-perfect encapsulation process could thwart this desire. Even 
when an inclusion is initially well bonded, that bond could fail with cyclic loading or 
from environmental attack. For this reason asymptotic results for a fully bonded inclusion 
are compared with those for an unbonded inclusion (i.e., mold released) that is free to 
undergo frictionless slip. When the inclusion is rigid, only the one-material wedge 
representing the encapsulant is analyzed. The edge boundary conditions are chosen to 
reflect the presence of the rigid inclusion. For a bonded inclusion the wedge edges are 
fully fixed. For an unbonded inclusion with frictionless slip, the edges are shear-free, and 
only the normal displacement is fixed. Here it is assumed that for uniform cooling 
(ATcO) or for a uniform external pressure (P* > 0), interfacial normal stress is always 
compressive, and there is no tendency for a gap to form at the encapsulant-to-inclusion 
interface (this was verified by the finite element calculation discussed below). The 
homogeneous boundary conditions on the edges of the wedge define an eigenvalue 
problem for the strength of the stress singularity, and the angular variation of the 
asymptotic stress field is associated with the corresponding eigenfunctions. Solutions to 
these types of asymptotic problems are well known (Williams, 1952; Seweryn and 
Molski, J996), so only results are presented here. 

Figure 3 shows that the strength of the stress singularity displays a modest 
dependence on Poisson’s ratio when the inclusion is fully bonded. When 
v=O.O, h-1=-0.28, whereas when v=O.5, h-1=-0.23. The severity of the stress singularity 
decreases as Poisson’s ratio increases. This can be contrasted with the case of bonded 
rigid and elastic quarter planes (asymptotic problem for a butt joint), where the strength 
of the singularity vanishes when v=O.O and is maximum when v=O.5 (Reedy, 1990). 
When the inclusion is unbonded, h-1=-0.67; and this value does not vary with Poisson’s 
ratio. The most notable finding is the dramatic increase in the strength of the stress 
singularity with interfacial debonding. The rigid inclusion assumption is thought to be a 
reasonable representation of bimaterial combinations, such as a steel inclusion embedded 
within an epoxy encapsulant. Chen and Nisitani (1993) have determined the characteristic 
equation defining the order of the inclusion-tip stress singularity for a bonded elastic 
inclusion. This permits an assessment of the rigid inclusion assumption. The strength of 
the symmetric mode singularity for a fully bonded, square, steel inclusion (E=193 GPa, 
v=O.3) in epoxy (E=3.5 GPa, v=O.35) is -0.242, whereas that for a rigid inclusion is 
-0.250; only a 3 per cent difference. 

Not only is the strength of the stress singularity altered by debonding, there is also 
a striking change in the angular variation of the asymptotic stress state. The spatial 
distribution of stress in the region dominated by the stress singularity is defined by 

CJ ap = Kar’%~~(0) (a,/3 = r-,8). (2) 

The functions defining the angular variation in the asymptotic stress components, 
O,(e), B,,(6), and O,(e), are plotted for a bonded (v=O.35) and an unbonded 
inclusion in Figs. 4 and 5, respectively. Note that the functions are normalized so that 
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Oee(OO) = 1. With this normalization the singular hoop stress directly in front of the 
inclusion tip Oee(OO) = IQ’-‘. Figure 4 shows that when the inclusion is fully bonded, 
the magnitude of the radial stress in front of inclusion tip (0 = 0”) is much larger than the 
hoop stress and differs in sign. On the other hand, Figure 5 shows that when the inclusion 
is unbonded, hoop and radial stresses are again of opposite sign but of equal magnitude. 
Another indication of the profound difference in the asymptotic stress state of the bonded 
and unbonded inclusion is evident from a comparison of the functions defining the 
angular variation in pressure and effective stress (Figs. 6 and 7). Figure 6 shows that 
effective stress oe=(3J,)ln, where J, is the second stress deviator invariant, is highest in 
front the inclusion tip, and the pressure component is roughly one third of the effective 
stress. When the inclusion is unbonded, the effective stress is singular but independent of 
angular position, and pressure is nonsingular. 

Calibration for Inclusion-tip Stress Intensite 

Both the strength of the stress singularity, h-l, and the functions defining the 
angular variation in stress, O,,(0), are fully determined by the asymptotic analysis. In 
contrast the inclusion-tip stress intensity factor K, is determined by the full solution and 
depends on elastic properties, overall geometry, and the loading. Two axisymmetric 
(O-independent) loadings are considered: uniform cooling (AT<O) and a uniform pressure 
(P*> 0) applied to the disk’s outer edge. These loadings are actually related. The solution 
for uniform cooling can be obtained by superposing a suitably chosen constant stress 
state with the solution for an applied pressure. If the outer edge of the epoxy disk is fixed 
and the disk is subjected to a uniform temperature change AT, then the plane stress 
solution is &,=he=O, and o,=o,,=-EAaAT/( l-v), where Aa is the differential coefficient 
of thermal expansion (Aa=encapsulant CTE - inclusion CTE). This solution is valid for 
both bonded and unbonded inclusions. The superposition of this constant stress state and 
the solution for a disk subjected to an edge pressure P*=-EAaAT/(l-v) yields the 
solution for the uniform cooling of a disk with a stress-free edge. The pressure loading 
provides the fundamental singular solution, and the magnitude of the stress singularity 
will depend on P*, with P*=-EAtiT/( l-v) for uniform cooling. 

The region dominated by the asymptotic solution can be extended by adding an 
asymptotically constant term, when it exists, to the singular term (Reedy, 1993). The 
asymptotic solution then has the form 

0 ap = K,r”-‘?Tap(B) + C6,, (a,P = r,0). 

The constant stress term C must satisfy the asymptotic boundary conditions and for 
simple cases is readily determined. For example, consider a uniformly cooled encapsulant 
bonded to a rigid inclusion. If the encapsulant were unbonded, its in-plane area would 
change with a change in temperature (i.e., free thermal expansion). In a plane stress 
analysis, the stress state G* = err = oee = -EAaAT/(l-v) produces an area change that 
precisely negates that of the thermal expansion. Consequently, this constant stress state 
satisfies the asymptotic problem of a uniformly cooled encapsulant bonded to a rigid 
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inclusion (fixed edges) since the total strain is zero. Yang and Munz (1995) have 
determined the asymptotic constant stress term for the more general case of a two- 
material elastic joint subjected to a uniform temperature change, and their result reduces 
to that presented here for the rigid inclusion. 

Based upon dimensional considerations and the required linear dependence on 
load, the inclusion-tip IQ calibration relation must have the form 

K, = o*h’-‘I,(v,;), 

where 

I 

P* uniform applied pressure P * 
o* = (5) 

-EAo.AT 
l-v 

uniform temperature change AT, 

whereas the asymptotically constant term is 

c= 

-EAcxAT 
l-v 

bonded rigid inclusion 

(6) 

-P* unbonded rigid inclusion. 

Note that for a bonded inclusion, C=O when AT=0 and P*#O, whereas for an unbonded 
inclusion, C=O when P*=O and AT#O. The function I, depends on nondimensional 
material and geometric parameters, and for this problem the only possibilities are v and 
D/h. The value of I, for v and D/h combinations of interest can be determined by 
matching asymptotic and full field, finite element solutions. 

Figure 8 shows a typical mesh used in the finite element calculations. Only one 
eighth of the disk (Fig. 1) is analyzed. The loading is symmetric, and there is geometric 
symmetry about the x and y axes as well as about the two lines that divide the square 
inclusion into four smaller squares. Bonded and unbonded inclusions are modeled by 
applying the appropriate boundary conditions to the wedge edge. A highly refined mesh 
is used in the region of the inclusion tip (smallest element/h=l.4e-5) to ensure an accurate 
match with the asymptotic solution. The mesh is composed of four-noded, plane stress 
elements. A calculation must be carried out for every v and D/h combination of interest 
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(h and CT* can be arbitrarily chosen). For the case of the unbonded inclusion, hoop stress 
along the x-axis is used to calculate K, (Eq. 3), and then Eq. 4 is used to determine Ip. 
When the inclusion is bonded, the magnitude of the radial stress component along the 
x-axis is significantly higher than that of the hoop component (Fig. 9). Consequently 
when the inclusion is bonded, the radial stress along the x-axis (with the asymptotic 
constant term that exists in this case subtracted out) is used to calculate K, and I,. Table 1 
lists h-l and J, values for a range of v and D/h. Note that results for the unbonded 
inclusion display only a minimal dependence on D/h for D/h>5. For this range of D/h, the 
stress state is essentially independent of D (i.e., disk acts as if its infinite). 

For sufficiently large D/h it seems likely that the stress state developed in regions 
far from the inclusion will not depend on inclusion shape. The stresses are expected to 
approach those found in a disk containing a circular inclusion of equal area. Specifically 
for n>h, one anticipates for plane stress 

cm = -6,, = 
EAaAT r, * 

l+v r ’ 0 
(7) 

Comuarison of Full and Asvmutotic Solutions 

The results plotted in Figs. 9 and 10 illustrate the nature of inclusion-tip stress 
fields and the range of applicability of the asymptotic solutions. These results are for a 
disk with diameter D=127 mm and for an inclusion with side length h=18 mm (D/h=7). 
The disk is subjected to uniform cooling with AT=-100°C. Encapsulant properties are 
representative of a typical, high-strength epoxy. The encapsulant has a Young’s modulus 
E=3.5 GPa, Poisson’s ratio v--0.35, and Aa=40e-6X. 

When cooled, a large radial compressive stress is generated at the tip of a bonded 
inclusion (Fig. 9). Although tensile, the hoop stress is relatively low. This stress state 
does not seem to favor encapsulant cracking. Recall that for the bonded inclusion, an 
asymptotically constant term exists whenever AT#O (Eq. 6). This term must be added to 
the singular term to get good agreement with the finite element result. When the constant 
term is included, the asymptotic and finite element results for ~~(0”) are within 4 per cent 
for r/h<O.O56. The finite element and circular inclusion results for o,(O”) merge when 
r/h>O.2. A large tensile hoop stress is generated when a disk with an unbonded inclusion 
is cooled and, consequently, could promote cracking (Fig.10). The radial stress is of 
equal magnitude but is compressive. The asymptotic solution contains only a singular 
term, and it is within 4 per cent of the finite element result when rVhcO.17. When 
combined, the asymptotic and circular inclusion solutions provide an excellent match to 
the finite element solution over the full range of r/h. Since a large tensile hoop stress is 
generated only when the inclusion is unbonded, one might speculate that for encapsulant 
cracking to initiate at the tip of a well-bonded inclusion, the inclusion tip may need to 
first debond. Such debonding could be produced by thermal cycling or perhaps by 
environmental weakening of the interface. 
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Figures 11 and 12 illustrate the effect of encapsulant yielding on inclusion-tip 
stress fields. The epoxy is idealized as an elastic, perfectly-plastic material (oy= 74 MPa). 
Although this is a reasonable idealization when the temperature is sufficiently below the 
epoxy’s glass transition temperature, T,, epoxy actually responds. in a much more 
complex manner. Stress relaxation data suggest that epoxies display‘ nonlinear, stress- 
dependent viscoelasticity, and yielding is a manifestation of this constitutive behavior 
(Reedy and Guess, 1996). When the inclusion is fully bonded, the calculated yield zone is 
0.013 mm long (at 8=0”, see Fig. 11). When the inclusion is unbonded, the yield zone is 
ten times longer (Fig. 12). Yielding substantially alters the stress state at the tip of the 
unbonded inclusion. Yielding relieves stress parallel to the interface and greatly reduces 
the magnitude of the radial compressive stress found in front of the inclusion. 
Consequently, the encapsulant directly in front of the inclusion is subjected to a nearly 
uniaxial, hoop tensile stress. Note that the yield zone is still embedded within the singular 
elastic field defining hoop stress and is, accordingly, characterized by I&. 

ComDarison with ExDeriment 

A limited number of encapsulated-inclusion specimens have been fabricated and 
tested. The primary goal was to simply determine if encapsulant cracking could be 
induced when cooling a reasonably sized specimen. Specimens were fabricated in a RTV 
mold. The inclusion was centered and then attached (using double-sided tape) to the 
bottom of a mold containing a 127 mm diameter, 6 mm deep cylindrical cavity. A lid, 
incorporating fill and bleed holes, ensured that the surfaces of the inclusion and epoxy 
disk were flush. An Epon 828 (digylcidyl ether of bisphenol A) cured with DEA 
(diethanolamine) epoxy was used for the encapsulant (100/12 mix ratio, cured for 16 
hours at 70°C); and sharp-cornered, stainless steel inclusions, with an edge-length of 
either h=9 or 18 mm, were encapsulated. In some cases a mold release was applied to the 
inclusion to simulate the unbonded condition. 

A liquid-nitrogen cooled environmental chamber was used to test the specimens. 
The specimens were cooled at a rate of l”C/minute. Initial tests, using specimens with 
thermocouples mounted at several radial positions, showed that this rate produced nearly 
uniform cooling of the epoxy disk. Several specimens could be hung in the central part of 
the chamber at the same time. The temperature at crack initiation was determined by 
observing the specimens through a window in the environmental chamber. Two 
specimens with the larger inclusion (h=18 mm) were fabricated and tested. One specimen 
contained an inclusion whose edges were mold-released, whereas the other specimen 
contained an inclusion whose edges were subjected to a light sandblast. The specimen 
with the mold-released inclusion failed when first cooled to -70°C. The crack initiated 
from the inclusion tip. The specimen with the good interfacial bond. (sandblasted edge) 
was cooled three separate times to -80°C and once to -140°C without encapsulant 
cracking. This result confirms the expectation that an unbonded inclusion promotes 
encapsulant cracking. 

If encapsulant cracking occurs at a critical K, value, then the temperature change 
required to initiate cracking decreases with increasing inclusion size (see Eq. 4). 
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Therefore, ten additional specimens with mold-released inclusions were fabricated. Half 
of these specimens contained the larger inclusion (h=18 mm) and the other half contained 
the smaller inclusion (h=9 mm). Three specimens of each inclusion size were cooled to 
-8O”C, and then held at that temperature for up to three hours. Encapsulant cracking 
occurred in only one of the six specimens. The specimen that cracked contained the 
larger inclusion (h=18 mm), and cracking occurred during the -80°C hold. The four 
remaining specimens were first heated to 90°C (above the epoxy’s T, of 7O”C), held at 
that temperature for about 30 minutes, and then cooled. Neither of the two specimens 
with the smaller inclusion cracked. On the other hand one of the specimens with the 
larger inclusion cracked at -105”C, and the other cracked at -135 “C. In spite of the limit 
scope of the initial tests, the results obtained to date are in qualitative agreement with the 
analysis. Upon cooling, cracks developed only in disks with mold-released inclusions, 
and cracking occurred only in specimens with the larger inclusion. 

Summary 

The K, calibration for a rigid, square inclusion embedded within a thin, epoxy 
disk and subjected to either a uniform cooling or to an external applied pressure has been 
determined. This symmetrically loaded configuration is a particularly attractive test 
specimen since the asymptotic stress field is characterized by a single K. Both fully 
bonded and unbonded (frictionless sliding) conditions were considered. Note that for the 
idealized, plane stress inclusion geometry analyzed: 

l 

l 

The singular stress state generated by the bonded inclusion is very different from that 
generated by the unbonded inclusion. For an encapsulant with a Poisson’s ratio of 
0.35, the strength of stress singularity for the bonded inclusion is -0.25, whereas the 
strength of the singularity for the unbonded inclusion is -0.67. The angular variation 
of the stress field also differs. When the inclusion is fully bonded, the magnitude of 
the radial stress in front of inclusion tip (6 = O”, Fig. 1) is much larger than the hoop 
stress. When the inclusion is unbonded, hoop and radial stress have the same 
magnitude but are of opposite sign. 

An epoxy disk with an unbonded inclusion appears to be more likely to crack when 
cooled than a disk containing a fully bonded inclusion. A large radial compressive 
stress is generated in front of the inclusion tip when the inclusion is fully bonded, 
whereas a large tensile hoop stress is generated when the inclusion is unbonded. One 
might speculate that for encapsulant cracking to initiate at the tip of an initially well- 
bonded inclusion, the inclusion tip might need to first debond. Such debonding could 
be generated by thermal cycling or perhaps by environmental weakening of the 
interface. 

Encapsulant yielding has a significant effect on the nature of the stress state at the tip 
of an unbonded inclusion. Yielding relieves stress parallel to the interface and greatly 
reduces the magnitude of the radial compressive stress found in front of the inclusion. 
Consequently, the encapsulant directly in front of the inclusion is subjected to a 
nearly uniaxial, tensile stress. For a typical high-strength epoxy, the calculated yield 
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zone is embedded within the singular elastic field defining hoop stress and is 
accordingly characterized by K. 

l Results of a very limited number of tests are in qualitative agreement with the 
analysis. A square, sharp-cornered steel insert was encapsulated within a thin, epoxy 
disk. Upon cooling, cracks developed only in disks with mold-released inserts. The 
likelihood for cracking is expected to increase with inclusion size, and only those 
disks with the largest inclusion cracked. 
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Table 1. Value of h-1 and $for various v and D/h. 

Interface V D/h h-1 %(O”) qo”) 4 
Bonded 0.35 7.07 -0.2502 -63.25 1 .oo 0.0135 
Unbonded 0.05 14.14 -0.6667 -1.00 1.00 0.1779 
Unbonded 0.15 14.14 -0.6667 -1.00 1.00 0.1455 
Unbonded 0.25 14.14 -0.6667 -1.00 1.00 0.1182 
Unbonded 0.35 14.14 -0.6667 -1.00 1.00 0.0949 
Unbonded 0.45 14.14 -0.6667 -1.00 1.00 0.0748 
Unbonded 0.35 7.07 -0.6667 -1.00 1.00 0.0940 
Unbonded 0.35 5.66 -0.6667 -1.00 1.00 0.0935 
Unbonded 0.35 4.71 -0.6667 -1.00 1.00 0.0927 
Unbonded 0.35 3.54 -0.6667 -1.00 1.00 0.0910 
Unbonded 0.35 2.83 -0.6667 -1.00 1.00 0.0886 
Unbonded 0.35 2.18 -0.6667 -1.00 1.00 0.083 1 
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Figure 1. Rigid, square inclusion encapsulated within a linear elastic disk . 
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Figure 2. Asymptotic problem for encapsulated, rigid wedge. Symmetry 
about x axis. 
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Figure 3. Variation of the strength of the stress singularity, -(l-h), with 
Poisson’s ratio v for either a bonded or an unbonded rigid square inclusion. 
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Figure 4. Angular variation of o,, oee, and ore about the tip of a fully 
bonded, rigid square inclusion (encapsulant v=O.35). 
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Figure 5. Angular variation of o,, CJ,,, and O, about the tip of an unbonded, 
rigid square inclusion (frictionless sliding). 
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Figure 6. Angular variation of CT, and o, about the tip of a fully bonded, 
rigid square inclusion (encapsulant v=O.35). 
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Figure 7. Angular variation of q about tip of an unbonded, rigid square 
inclusion (frictionless sliding). 
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Figure 8. Typical finite element mesh used in analysis. 
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Figure 9. Comparison of linear elastic finite element and asymptotic 
solutions for stress in front of a fully bonded inclusion embedded within an 
epoxy disk with h=l 8mm and AT=-100” C. 
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Figure 10. Comparison of linear elastic finite element and asymptotic 
solutions for stress in front of an unbonded inclusion embedded within an 
epoxy disk with h=l&nm and AT=-100°C. 
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Figure 11. Comparison of linear elastic and elastic perfectly-plastic finite 
element solutions with asymptotic solution for stress in front of a fully 
bonded inclusion embedded within an epoxy disk with h= 18mm and 
AT=-100°C. 
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Figure 12. Comparison of linear elastic and elastic-perfectly-plastic finite 
element solutions with asymptotic solution for stress in front of an unbonded 
inclusion embedded within an epoxy disk with h=l&nm and AT=-100°C. 
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